Twin Turbo

Twin Turbo BMW

Что это такое и как оно работает?

Twin Turbo в переводе с английского означает двойное турбо и в этой системе турбонаддува стоит два турбокомпрессора. Сначала турбокомпрессоры использовались для преодоления и инерционности системы. Сейчас же использование и применение этих турбокомпрессоров значительно выросло, так как он снижает расход горючего.

Параллельный Twin Turbo или Biturbo

Параллельная система Твин Турбо работает одновременно и параллельно друг другу, и включает в себя два одинаковых турбокомпрессора. Параллельная работа происходит из-за ровного деления потока сгоревших газов между турбокомпрессорами. Из каждого компрессора выходит сжатый воздух и поступает в общий впускной коллектор, и потом распределяется по цилиндрам.

Параллельный Twin Turbo используется, как правило, на дизельных V-образных двигателях. Из-за параллельной схемы турбонаддува эффективность системы основывается на том, что две маленькие турбины имеют меньшую инерционность, чем одна большая турбина. Турбокомпрессоры работают на всех оборотах двигателях обеспечивая быстрое повышение наддува. И каждая турбина установлена на своём выпускном коллекторе.

Последовательный Twin Turbo

В системе последовательного Twin Turbo постоянно работает первый турбокомпрессор, а второй начинает работать в определённом порядке работы двигателя (повышенная частота оборотов, нагрузка). Последовательный турбокомпрессор включает два одинаковых по характеристикам турбокомпрессора.

Двухступенчатый Twin Turbo

В техническом плане система двухступенчатого турбонаддува является самой совершенной. Компания BorgWarner Turbo Systems ставит эту систему на дизельные двигатели Cummins и BMW, а с 2004 года начали применять систему двухступенчатого турбонаддува на некоторых дизельных двигателях от Opel.

Схема двухступенчатого турбонаддува

Bmw 3 (e46) | система турбонаддува – общая информация | бмв 3

Система турбонаддува – общая информация

Общая информация и принцип функционирования

Система состоит из турбокомпрессора с водяным охлаждением, промежуточного охладителя
(Intercooler) и системы управления наддувом (MPFI Turbo).

Схема функционирования системы турбонаддува

Система управления позволяет форсировать двигатель по мощности, что в существенной
мере повышает эффективность его отдачи и, как следствие, улучшает маневренность
автомобиля во всех рабочих диапазонах. В системе управления предусмотрена функция
компенсации изменения барометрического давления при эксплуатации автомобиля в
высокогорной местности.

Воздух, пройдя воздухоочиститель, попадает в турбокомпрессор, после сжатия в котором,
охлаждается в теплообменнике промежуточного охладителя (Intercooler), после чего
подается в корпус дросселя и далее, – во впускной трубопровод и цилиндры двигателя.

Для демпфирования быстрого изменения давления при резком закрывании дроссельной
заслонки в обход нее предусмотрен специальный перепускной канал. При резком нарастании
глубины разрежения при закрывании заслонки воздух по данному каналу поступает
на вход компрессора. Применение такой системе позволяет в значительной мере снизить
уровень шумового фона во время торможения двигателем.

Система управления наддувом (MPFI Turbo) состоит из датчика давления воздуха,
блока управления, управляющего электромагнитного клапана, диафрагмы привода перепускного
клапана и собственно клапана сброса давления, обеспечивающего перепускание газов
мимо турбины. Датчик давления воздуха снабжает блок управления информацией о давлении
во впускном трубопроводе.

Турбокомпрессор

Конструктивные особенности

Конструкция турбокомпрессора

Компрессор оснащен собственной водяной рубашкой и перепускным клапаном сброса
давления. Турбина изготовлена из термостойкой стали, корпус компрессора, – из
алюминиевого сплава. Вал турбины удерживается в подшипниках плавающего типа.

Регулировка давления наддува

Назначение перепускного клапана сброса давления

С увеличением частоты вращения коленчатого вала (при сходных положениях дроссельной
заслонки) увеличивается расход отработавших газов, что, в свою очередь, приводит
к росту оборотов вала турбины (приблизительно с 20 000 до 150 000 в минуту) и,
соответственно, – давления наддува. Рост давления наддува может привести к детонационному
сгоранию воздушно-топливной смеси (дизель-эффект) и, как следствие, – возрастанию
тепловой нагрузки на днища поршней, что чревато повреждением внутренних компонентов
двигателя. С целью ликвидации подобного эффекта компрессор оборудован специальным
клапаном сброса давления, обеспечивающего перепускание газов в обход турбины.


Схема функционирования клапана сброса давления

Концепция управления давлением наддува

Смазка турбокомпрессора

Турбокомпрессор получает масло из системы смазки двигателя. Как только частота
вращения вала турбины достигает нескольких тысяч оборотов в минуту, подшипники
вала “всплывают” на масляном клине, образующемся как с внешней, так и с внутренней
стороны подшипниковой сборки. Кроме смазки подшипников масло обеспечивает также
дополнительный отвод тепла от турбокомпрессора.


Схема смазки турбокомпрессора

Охлаждение турбокомпрессора

С цель повышения срока службы и надежности функционирования турбокомпрессора в
его корпусе предусмотрена водяная рубашка охлаждения. Охлаждающая жидкость поступает
по соединительным шлангам из водяной рубашки двигателя. После отбора тепла от
турбокомпрессора рабочая жидкость направляется в расширительный бачок системы
охлаждения.

Система промежуточного охлаждения воздуха

Схема функционирования системы промежуточного охладителя системы турбонаддува

Промежуточное охлаждение воздуха после выхода его из компрессора повышает эффективность
функционирования системы турбонаддува, снижает вероятность возникновения детонации
смеси и способствует сокращению расхода топлива.

Схема подключения теплообменника промежуточного охладителя системы
турбонаддува

Промежуточный охладитель (Intercooler) представляет собой водо-воздушный теплообменник
с низким гидравлическим сопротивлением и высокой охлаждающей способностью.

Конструкция теплообменника промежуточного охладителя (Intercooler)
системы турбонаддува

Теплообменник промежуточного охладителя, состоящий из пяти отдельных блоков, выполнен
из алюминиевого сплава и обеспечивает отвод избытка тепла от воздушного потока,
температура которого поднимается в результате адиабатического сжатия в компрессоре.

Схема подключения радиатора промежуточного охладителя системы турбонаддува

Радиатор промежуточного охладителя изготовлен из оребренных алюминиевых труб.
Левый бачок радиатора разделен на две части, что позволяет более эффективно обеспечивать
отвод тепла от охлаждающей жидкости. Для удаления из тракта воздушных пробок предусмотрена
специальная вентиляционная пробка.

Конструкция насоса промежуточного охладителя

Привод крыльчатки насоса промежуточного охладителя осуществляется от индивидуального
электромотора.

Мощность которого составляет порядка
28 Вт
при открывании
дроссельной заслонки менее чем
80% и 50 Вт
при
большем

открывании заслонки. Данная схема реализована с целью экономии затрат мощности.

Клапан перепускания воздуха в система наддува

Как уже говорилось выше, при резком закрывании дроссельной заслонки в системе
впуска воздуха может возникать низкочастотный гул. С целью минимизации звукового
фона при торможении двигателем в тракт системы турбонаддува включен специальный
перепускной клапан. Клапан срабатывает под воздействием разрежения, возникающего
за дроссельной заслонкой при резком ее закрывании, в результате воздух из дроссельной
камеры перенаправляется на вход компрессора.

Конструкция перепускного клапана сброса давления

Диагностика неисправностей системы турбонаддува

Нарушения функционирования системы турбонаддува могут приводить к следующим последствиям:

При повышенном давлении наддува:

    a) Детонация воздушно-топливной смеси.

При заниженном давлении наддува:

    b) Потеря мощности

    c) Снижение приемистости;

    d) Повышение расхода топлива.

При утечках масла:


e) Повышенный расход масла;

f) Образование белого дыма на выходе системы выпуска отработавших
газов.

Виды твин турбо и их отличия

Есть три разновидности схемы системы Twin Turbo: последовательная, параллельная, и ступенчатая. Эти три схемы отличаются друг от друга расположением, характеристиками и последовательностью работы турбокомпрессоров. Электронная система управления очень точно настраивает работу турбокомпрессоров. Система включает входные датчики, приводы клапанов управления потоком воздуха и переработанным горючем.

Торговый лейбл системы турбонаддува это Twin Turbo, но и есть другое название этой системы — «Biturbo». Не совсем правильно в разных информационных источниках Biturbo воспринимают, как систему с параллельной схемой работы турбокомпрессора.

Принцип работы системы регулируемого двухступенчатого турбонаддува

В системе двухступенчатого турбонаддува используется клапанное регулирование потока сгоревших газов и нагнетаемого воздуха. Эта система состоит из двух турбокомпрессоров разного размера. В последствии установленных в впускном и выпускном трактах.

Перепускной клапан сгоревших газов закрыт при низких оборотах двигателя. Сгоревшие газы через малый турбокомпрессор, имея максимальную отдачу и минимальную инерцию проходят дальше через большой турбокомпрессор. И так как давление отработавших газов не сильное, то следовательно и большая турбина практически не вращается. Перепускной клапан наддува закрыт на впуске и воздух поступает последовательно через большой и малый компрессоры.

Общая работа турбокомпрессоров начинает осуществляться при росте оборотов. И постепенно начинает открываться перепускной клапан сгоревших газов. Большая турбина начинает все больше и интенсивно раскручиваться, так как часть отработавших газов идёт прямо через неё.

Большой компрессор на впуске с определённым давлением начинает сжимать воздух, но давление не слишком большое и сжатый воздух дальше поступает в малый компрессор, где продолжает повышается давление. При этом перепускной клапан остаётся закрыт. Перепускной клапан сгоревших газов открывается полностью при полной нагрузки.

Останавливается малая турбина, а большая начинает раскручиваться до максимальной частоты, так как через неё практически полностью проходят сгоревшие газы. Давление наддува достигает своего максимального значения на впуске большого компрессора при этом малый компрессор создаёт помеху для воздуха.

Благодаря системе двухступенчатых турбокомпрессоров системы Twin Turbo мгновенно достигается номинальный крутящий момент и поддерживается в широком диапазоне оборотов двигателя. При этом достигается максимальное увеличение мощности. Таким образом, система поддерживает блестящую работу турбокомпрессоров на всех режимах работы двигателя.

Видео про Твин Турбо: как работает

1. На BMW

2. Biturbo на Opel

3. Triple-Turbo на BMW

Фотографии двигателя Twin Turbo BMW 760i V12:

Схема системы работы твин турбо на subaru

Электронная система управления обеспечивает переход между режимами и регулирует поток сгоревших газов ко второму турбокомпрессору за счёт специального клапана. Правильно такую систему называть последовательно — параллельная, потому что при полном открытии клапана управления подачей сгоревших газов оба турбокомпрессора работают параллельно.

Сжатый воздух подаётся в общий впускной коллектор от двух турбокомпрессоров и распределяется по цилиндрам.Чтобы достичь максимально высокого выхода мощности, система последовательности Twin Turbo минимизирует последствия турбозадержки. Применяются, как на дизельные двигатели, так и на бензиновые.

Оцените статью
Добавить комментарий

Adblock
detector